

Differentiable State Space Models and Hamiltonian Monte Carlo Estimation

David Childers,¹ Jesús Fernández-Villaverde,² Jesse Perla³, Chris Rackauckas,⁴ Peifan Wu⁵ February 15, 2023

¹CMU ²University of Pennsylvania ³UBC ⁴MIT and Maryland ⁵Amazon

- Many economic models can be represented in state space form:
 - Observables z_t driven by the dynamics of some states x_t .
 - The law of motion of x_t is governed by some parameters θ .
- The bayesian approach estimates θ and $x^T = \{x_t\}_{t=1}^T$ with data $z^T = \{z_t\}_{t=1}^T$.
- Algorithms to deal with the nonlinear/non-Gaussian case are slow, numerically unreliable, and difficult to code, particularly in high dimensions.
- Goal: Efficient, reliable, and scalable methods for nonlinear models.
- Today: Can we have better samplers?

Hamiltonian Monte Carlo

- Yes, gradient information enables improved samplers \Rightarrow Hamiltonian Monte Carlo (HMC):
 - Key idea: we add a momentum vector that induces a kinetic energy term (i.e., Hamiltonian dynamics).
 - Thus, we direct sampling towards high-probability regions and explore high-dimensional space efficiently.
 - HMC can perform joint estimation of θ and x^{T} , thus bypassing the need to filter.
- But, how do we (efficiently) find the required gradients of the likelihood of the model?
- Do not even think about numerical or symbolic derivatives!
- Automatic differentiation (AD) gets you part of the way there.
- But default implementations of AD (e.g., Stan) can be inefficient or unusable.

- Integrate DSGE models into a differentiable probabilistic programming environment.
- In particular, we design custom implicit gradient rules in an open-source library and provide a domain-specific language (DSL) that extends Julia with a Dynare-like syntax.
- You write your DSGE model as a composable building block.
- Language solves the model (up to a perturbation of order 2), computes all the required gradients with a custom differentiable backend, and samples from posterior using Hamiltonian Monte Carlo.
- Tools are applicable beyond this model class or inference algorithm. For instance, Hamiltonian Monte Carlo for maximum likelihood on time-series models.

- Work in standard setting for discrete-time dynamic stochastic expectational difference models:
 - Fernández-Villaverde, Rubio-Ramírez, and Schorfheide (2016).
- Many macro state-space models can be represented as in Schmitt-Grohé and Uribe (2001):

 $\mathbb{E}_t \mathcal{H}(y', y, x', x; \theta) = 0$

- x: state variables.
- y: control variables.
- θ : parameters.
- x', y': next period states.

Perturbation approximations

• The solution to the model is of the form:

 $y = g(x; \theta)$ $x' = h(x; \theta) + \eta \varepsilon'$

• We approximate the solutions by perturbing the deterministic steady state:

 $\mathcal{H}\left(\bar{y},\bar{y},\bar{x},\bar{x};\theta\right)=0$

- Denote $\hat{x} = x \bar{x}$, deviations from the deterministic steady state.
- First-order: $\hat{y} = g_x(\bar{x})\hat{x}, \hat{x}' = h_x(\bar{x})\hat{x} + \eta\varepsilon'.$
- Second-order: $\hat{y} = g_x \hat{x} + \frac{1}{2} \hat{x}' g_{xx} \hat{x} + \frac{1}{2} g_{\sigma\sigma}, \hat{x}' = h_x \hat{x} + \frac{1}{2} \hat{x}' h_{xx} \hat{x} + \frac{1}{2} h_{\sigma\sigma} + \eta \varepsilon'.$

- General setup:
 - Prior distribution $p(\theta)$.
 - Dynamics (possibly pruned) generate likelihood of states $x^T : \prod_{t=1}^T p(x_t | x_{t-1}, \theta)$.
 - Observed data z^{T} generated from (possibly noisy) observation equation: $\{z_{t} = q(x_{t}, y_{t}, \varepsilon_{t}; \theta)\}_{t=1}^{T}$.
- We apply Bayes rule to infer the posterior distribution of θ and states x^T :

$$p(\theta, x^T | z^T) \propto p(\theta) \Pi_{t=1}^T \left(p(z_t | x_t, \theta) p(x_t | x_{t-1}, \theta) \right)$$

• Often, we only care about marginal posterior: $p(\theta|z^T) = \int p(\theta, x^T|z^T) dx^T$.

Standard approach

• Notice that:

$$\underbrace{\ln p\left(\theta|z^{T}\right)}_{\text{log-posterior}} = \underbrace{\ln p\left(\theta\right)}_{\text{log-prior}} + \underbrace{\ln p\left(z^{T}|\theta\right)}_{\text{log-likelihood}} + C = \ln p\left(\theta\right) + \sum_{t=1}^{T} \ln p\left(z_{t}|z^{t-1},\theta\right) + C$$

where:

$$p(z_t|z^{t-1},\theta) = \int p(z_t, x_t|z^{t-1}, \theta) dx_t$$
$$= \int p(z_t|x_t, \theta) p(x_t|z^{t-1}) dx_t$$

- For linear-Gaussian models, $p(x_t|z^{t-1})$ is updated by Kalman filter.
- For others, $p(x_t|z^{t-1})$ usually goes through particle filter.
- We draw from $p(\theta|z^{T})$ using a Random Walk Metropolis-Hastings (RWMH) or a related refinement.

Joint likelihood

• But recall that we also have the joint likelihood of θ conditional on data z^{T} and state states x^{T} :

$$\underbrace{\ln p\left(\theta, x^{T} | z^{T}\right)}_{\text{log-posterior}} = \underbrace{\ln p\left(\theta, x^{T}\right)}_{\text{log-prior}} + \underbrace{\ln p\left(z^{T} | x^{T}, \theta\right)}_{\text{log-likelihood}} + C$$

$$= \ln p\left(\theta\right) + \ln p\left(x^{T} | \theta\right) + \sum_{t=1}^{T} \ln p\left(z_{t} | x^{t}, \theta\right) + C$$

$$= \ln p\left(\theta\right) + \sum_{t=1}^{T} \ln p\left(z_{t} | x_{t}, \theta\right) + \sum_{t=1}^{T} \ln p\left(x_{t} | x_{t-1}, \theta\right) + \ln p\left(x_{0} | \theta\right) + C$$

$$= \ln p\left(\theta\right) + \sum_{t=1}^{T} \ln p\left(z_{t} | \epsilon^{t}, x_{0}, \theta\right) + \sum_{t=1}^{T} \ln p\left(\epsilon_{t} | \theta\right) + \ln p\left(x_{0} | \theta\right) + C$$

• Unfeasible to use RWMH to draw from this joint likelihood.

Our approach

- Standard approach scales poorly:
 - Exact filters applicable only to a limited model class.
 - Approximate filters are costly and prone to failure.
 - RWMH exhibits dimension-dependent time to draw "effective" samples.
- In this paper:
 - Replace RWMH with HMC: more efficient and reliable sampling.
 - Draw from joint likelihood, allowed by HMC, bypassing filtering.
 - A filter-free, universal way to estimate non-linear, non-Gaussian models.

- $\theta_{i+1} \sim \mathcal{N}(\theta_i, M)$.
- Accept with probability $\min\left(1, \frac{p(\theta_{i+1}|y^{T})}{p(\theta_{i}|y^{T})}\right).$

- $q_{i+1} \sim \mathcal{N}(0, M)$.
- Set $q(0) = q_{i+1}$ and $\theta(0) = \theta_i$.
- $\theta_{i+1}|q_{i+1}$ through $\tau = 0, ..., L$:
 - $q(\tau + \epsilon/2) = q(\tau) + \frac{\epsilon}{2} \nabla_{\theta} \log p(\theta(\tau)|y^{T}).$

•
$$\theta(\tau + \epsilon) = \theta(\tau) + \epsilon M^{-1}q(\tau + \epsilon/2)$$
.

- $q(\tau + \epsilon) = q(\tau + \epsilon/2) + \frac{\epsilon}{2} \nabla_{\theta} \log p(\theta(\tau + \epsilon) | y^{T}).$
- Accept with probability: $\min\left(1, \frac{\exp(\log p(\theta_{i+1}|y^T) - \frac{1}{2}q_{i+1}^T M^{-1}q_{i+1})}{\exp(\log p(\theta_i|y^T) - \frac{1}{2}q_i^T M^{-1}q_i)}\right).$

High-dimensional geometry

- Expectation values are given by accumulating the integrand over a volume.
- In regular models, posterior density decays exponentially with distance from mode: there is not much volume at the mode!
- Simple example: think about tossing a coin 1000 times, with p(H) = 0.500000001.
 - 1. $\{H, H, ..., H\}$ is the most likely event.
 - 2. And yet, most events will have around 500 heads!
- In high D, volumes concentrates in thin shell $O(\sqrt{D})$ away from mode: typical set (this a manifestation of concentration of measure).
- Without preferred direction, RWMH must take small steps to stay on the typical set.
- HMC can use gradients to stay on the typical set and explore posterior better.
- So, everything is about getting derivatives right!

- Differentiable programming is one of the top research areas in computer science right now.
- This is the programming approach used by ChatGPT.
- Idea: write code that can be easily differentiated. How?
- Think about any program as a compositional function that maps inputs to outputs by composing functions along directed acyclical graph (DAG).
- Derivative computed by accumulating derivatives of node functions along a DAG using AD.

Computational Graph for Krusell Smith Model (Childers & Dogra 2018) Highlighted nodes are input variables

Automatic differentiation and the cheap gradient principle

- We apply AD within and between blocks by relying on a large library of primitives.
- By grouping terms, we can reduce cost *exponentially* relative to naive symbolic derivatives.
- Order of accumulation in chain rule affect performance:
 - Forward topological mode: accumulate from inputs to outputs.
 - Reverse topological mode: pass along sensitivities ("adjoints") from outputs to inputs.
- Cheap gradient principle: Reverse mode computes gradients in O(1) time:
 - Upshot: gradients same order of cost as function evaluation.
 - Gradient-based algorithms (e.g., HMC) as cheap per iterate as 0th order (e.g., RWMH).

- One could directly *unroll* a block: differentiate through the steps. In practice impossible for DSGE models. Why?
 - Think about the QZ algorithm complex-valued, eigenvalue sort only almost surely pointwise differentiable.
 - Sorry, Stan fans. Though, see Farkas and Tatar (2020).
- Instead, we register *custom adjoint rules* for DSGE models to bypass AD system for efficient derivative program.
 - Improvement with respect to existing methods, such as Iskrev (2010).

- Companion library: DifferentiableStateSpaceModels.jl provides differentiable rational expectations solver implementations at first and second order with custom adjoint rules.
- Methods for difference equations added to DifferenceEquations.jl: Conditional and unconditional sequence and likelihood evaluation for simulations and IRFs.
- Likelihoods handled within Turing.jl probabilistic programming library.

- Real business cycle model at first (linearization) and second order (with simulated data).
- The real small open economy model of Schmitt-Grohé and Uribe (2003) (with simulated data).
- The mid-size New Keynesian model of Fernández-Villaverde and Guerrón-Quintana (2021) (with real data).
- Examples use NUTS (Hoffman and Gelman, 2014) No U-Turn Sampler: Variant of HMC with adaptively-chosen integration length.

NUTS

Parameters	Pseudotrue	Post. Mean	Post. Std.	ESS	R-hat	ESS%	ESS/second	Time
α	0.3	0.2996	0.0078	821.2	1.0009	0.8295	2.6029	315
eta_{draw}	0.2	0.204	0.0529	418.99	1.0009	0.4232	1.328	315
ho	0.9	0.8981	0.0074	6188.4	1.0	6.2509	19.615	315

Table 1: RWMH with Marginal Likelihood, RBC Model, First-order

Table 2: NUTS with Marginal Likelihood, RBC Model, First-order

Parameters	Pseudotrue	Post. Mean	Post. Std.	ESS	R-hat	ESS%	ESS/second	Time
α	0.3	0.2994	0.0076	3214.6	1.0007	49.456	10.152	317
eta_{draw}	0.2	0.2003	0.0512	3282.7	1.0002	50.503	10.367	317
ho	0.9	0.8985	0.0073	3638.4	1.0	55.976	11.491	317

Table 3: NUTS with Joint Likelihood, RBC Model, First-order

Parameters	Pseudotrue	Post. Mean	Post. Std.	ESS	R-hat	ESS%	ESS/second	Time
α β_{draw}	0.3 0.2 0.9	0.2982 0.1932 0.8982	0.0071 0.0504 0.0075	41.168 84.815 248.1	1.0191 1.0048 1.0064	1.0292 2.1204 6.2024	0.0501 0.1032 0.3019	822 822 822

Figure 1: NUTS with Marginal Likelihood, RBC Model, First-order

Figure 2: NUTS with Joint Likelihood, RBC Model, First-order

Table 4:	RWMH	with	Marginal	Likelihood	on	Particle	Filter,	RBC	Model,	Second	-order
----------	------	------	----------	------------	----	----------	---------	-----	--------	--------	--------

Parameters	Pseudotrue	Post. Mean	Post. Std.	ESS	R-hat	ESS%	ESS/second	Time
α	0.3	0.3057	0.0074	43.986	1.0287	0.4887	0.0034	13127
eta_{draw}	0.2	0.2248	0.0447	33.342	1.0434	0.3705	0.0025	13127
ρ	0.9	0.9023	0.0064	414.87	1.0068	4.6097	0.0316	13127

Table 5: NUTS with Joint Likelihood, RBC Model, Second-order

Parameters	Pseudotrue	Post. Mean	Post. Std.	ESS	R-hat	ESS%	ESS/second	Time
α	0.3	0.3053	0.0077	89.406	1.0131	2.2351	0.0355	2519
eta_{draw}	0.2	0.2243	0.046	115.37	1.009	2.8842	0.0458	2519
ρ	0.9	0.9021	0.0047	481.7	1.0046	12.042	0.1912	2519

Figure 3: NUTS with Joint Likelihood, RBC Model, Second-order

(b) Second-order RBC

Figure 4: Inferred TFP Shocks of RBC Model

Table 6: Frequentist Statistics – Second-order Joint

	Parameters	Mean Bias	MSE	Cov. Prob. 80%	Cov. Prob. 90%
T = 50	lpha	-0.001	$7.14 imes10^{-5}$	96%	98%
	$eta_{\textit{draw}}$	0.0313	0.0027	94%	98%
	ho	-0.009	0.0004	74%	84%
T = 100	lpha	0.0010	4.46×10^{-5}	94%	96%
	$eta_{\textit{draw}}$	0.0181	0.0017	94%	100%
	ho	-0.002	8.69×10^{-5}	72%	90%
T = 200	lpha	0.0013	3.36×10^{-5}	88%	98%
	$eta_{\textit{draw}}$	0.0086	0.0017	84%	92%
	ho	-0.001	2.03×10^{-5}	88%	94%

NUTS, Joint Likelihood, Second-order

Figure 5: Robustness Comparison on Second-order RBC: Trace Plot

Figure 6: First Order RWMH+Kalman vs. HMC+Kalman vs. HMC+Joint

Figure 7: Second Order RWMH+Particle vs. HMC+Joint

Parameters		Mean			Std.			ESS			R-hat	
	Kalman	Joint	Joint									
		1st	2nd									
eta_{draw}	0.2107	0.2091	0.2034	0.0778	0.0795	0.0777	364.18	356.43	781.69	1.0030	1.0024	1.0037
h	0.7534	0.7372	0.7538	0.1137	0.1188	0.1148	189.01	181.83	502.38	1.0035	1.0144	1.0004
κ	4.2667	4.1932	4.1359	1.3054	1.2162	1.2679	499.63	468.10	1475.4	1.0091	1.0006	1.0002
χ	0.4893	0.5086	0.5060	0.1501	0.1517	0.1450	218.89	250.94	1199.4	1.0316	1.0002	1.0000
γ_R	0.4636	0.4806	0.4650	0.0745	0.0791	0.0780	262.76	308.30	796.87	1.0004	0.9999	1.0010
γ_{Π}	1.9077	1.9004	1.8969	0.0761	0.0824	0.0849	315.30	293.19	1797.0	1.0014	1.0022	1.0019
$100~(ar{\Pi}-1)$	0.8991	0.8867	0.8961	0.0826	0.0842	0.0800	351.67	225.21	923.10	1.0014	1.0083	1.0003
ρ _d	0.5781	0.5894	0.5924	0.2064	0.2081	0.2098	178.16	133.55	431.25	1.0037	1.0008	0.9999
$ ho_arphi$	0.9619	0.9574	0.9569	0.0235	0.0309	0.0310	250.04	63.954	278.07	1.0000	1.0002	1.0050
$ ho_g$	0.7921	0.7767	0.7910	0.1570	0.1618	0.1586	128.31	137.32	530.22	1.0025	1.0110	1.0001
Ē	0.3656	0.3708	0.3712	0.0543	0.0564	0.0574	316.70	177.06	828.77	1.0003	1.0230	1.0009
$\sigma_{\mathcal{A}}$	0.0073	0.0075	0.0075	0.0012	0.0013	0.0013	279.13	229.15	1093.1	0.9999	1.0003	1.0014
σ_d	0.0269	0.0285	0.0296	0.0126	0.0150	0.0171	223.30	181.06	413.28	1.0049	1.0100	1.0000
σ_{ϕ}	0.0146	0.0142	0.0140	0.0024	0.0022	0.0023	290.50	206.74	677.21	1.0008	0.9999	1.0009
σ_{μ}	0.0072	0.0072	0.0073	0.0012	0.0011	0.0012	270.72	318.07	816.76	1.0005	1.0067	1.0008
σ_m	0.0078	0.0075	0.0077	0.0015	0.0014	0.0015	214.51	312.64	776.08	1.0073	1.0001	1.0006
σ_{g}	0.0095	0.0093	0.0095	0.0020	0.0021	0.0020	172.03	106.32	503.85	1.0038	1.0136	1.0002
Λ_{μ}	0.0037	0.0038	0.0038	0.0009	0.0010	0.0009	238.88	280.80	916.97	1.0035	1.0010	1.0002
Λ_A	0.0015	0.0015	0.0015	0.0005	0.0005	0.0005	313.22	268.18	1344.7	1.0146	1.0032	0.9999

- Differentiable state space models enable easy and scalable nonlinear: DSGE inference by HMC.
- Many more applications are possible:
 - VI, SVGD, SGMCMC, parallel tempering, HMC within SMC.
 - Projection, higher order perturbation, differentiable filtering.
 - Neural networks, optimizers.
- Porting into FPGAs (Field Programmable Gate Arrays): Fernández-Villaverde et al. (2022).