
Differentiable State Space Models

and Hamiltonian Monte Carlo Estimation

David Childers,1 Jesús Fernández-Villaverde,2 Jesse Perla3, Chris Rackauckas,4 Peifan Wu5

February 15, 2023

1CMU 2University of Pennsylvania 3UBC 4MIT and Maryland 5Amazon

Inference for state space models

• Many economic models can be represented in state space form:

• Observables zt driven by the dynamics of some states xt .

• The law of motion of xt is governed by some parameters θ.

• The bayesian approach estimates θ and xT = {xt}Tt=1 with data zT = {zt}Tt=1.

• Algorithms to deal with the nonlinear/non-Gaussian case are slow, numerically unreliable, and difficult

to code, particularly in high dimensions.

• Goal: Efficient, reliable, and scalable methods for nonlinear models.

• Today: Can we have better samplers?

1

Hamiltonian Monte Carlo

• Yes, gradient information enables improved samplers ⇒ Hamiltonian Monte Carlo (HMC):

• Key idea: we add a momentum vector that induces a kinetic energy term (i.e., Hamiltonian dynamics).

• Thus, we direct sampling towards high-probability regions and explore high-dimensional space efficiently.

• HMC can perform joint estimation of θ and xT , thus bypassing the need to filter.

• But, how do we (efficiently) find the required gradients of the likelihood of the model?

• Do not even think about numerical or symbolic derivatives!

• Automatic differentiation (AD) gets you part of the way there.

• But default implementations of AD (e.g., Stan) can be inefficient or unusable.

2

What do we do?

• Integrate DSGE models into a differentiable probabilistic programming environment.

• In particular, we design custom implicit gradient rules in an open-source library and provide a

domain-specific language (DSL) that extends Julia with a Dynare-like syntax.

• You write your DSGE model as a composable building block.

• Language solves the model (up to a perturbation of order 2), computes all the required gradients

with a custom differentiable backend, and samples from posterior using Hamiltonian Monte Carlo.

• Tools are applicable beyond this model class or inference algorithm. For instance, Hamiltonian Monte

Carlo for maximum likelihood on time-series models.

3

Environment

• Work in standard setting for discrete-time dynamic stochastic expectational difference models:

• Fernández-Villaverde, Rubio-Raḿırez, and Schorfheide (2016).

• Many macro state-space models can be represented as in Schmitt-Grohé and Uribe (2001):

EtH (y ′, y , x ′, x ; θ) = 0

• x : state variables.

• y : control variables.

• θ: parameters.

• x ′, y ′: next period states.

4

Perturbation approximations

• The solution to the model is of the form:

y = g (x ; θ)

x ′ = h (x ; θ) + ηε′

• We approximate the solutions by perturbing the deterministic steady state:

H (ȳ , ȳ , x̄ , x̄ ; θ) = 0

• Denote x̂ = x − x̄ , deviations from the deterministic steady state.

• First-order: ŷ = gx (x̄) x̂ , x̂
′ = hx (x̄) x̂ + ηε′.

• Second-order: ŷ = gx x̂ + 1
2
x̂ ′gxx x̂ + 1

2
gσσ, x̂

′ = hx x̂ + 1
2
x̂ ′hxx x̂ + 1

2
hσσ + ηε′.

5

Estimation problem

• General setup:

• Prior distribution p(θ).

• Dynamics (possibly pruned) generate likelihood of states xT : ΠT
t=1p(xt |xt−1, θ).

• Observed data zT generated from (possibly noisy) observation equation: {zt = q (xt , yt , εt ; θ)}Tt=1.

• We apply Bayes rule to infer the posterior distribution of θ and states xT :

p(θ, xT |zT) ∝ p(θ)ΠT
t=1 (p(zt |xt , θ)p(xt |xt−1, θ))

• Often, we only care about marginal posterior: p(θ|zT) =
∫
p(θ, xT |zT)dxT .

6

Standard approach

• Notice that:

ln p
(
θ|zT

)︸ ︷︷ ︸
log-posterior

= ln p (θ)︸ ︷︷ ︸
log-prior

+ ln p
(
zT |θ

)︸ ︷︷ ︸
log-likelihood

+C = ln p (θ) +
T∑
t=1

ln p
(
zt |z t−1, θ

)
+ C

where:

p
(
zt |z t−1, θ

)
=

∫
p
(
zt , xt |z t−1, θ

)
dxt

=

∫
p (zt |xt , θ) p

(
xt |z t−1

)
dxt

• For linear-Gaussian models, p
(
xt |z t−1

)
is updated by Kalman filter.

• For others, p
(
xt |z t−1

)
usually goes through particle filter.

• We draw from p
(
θ|zT

)
using a Random Walk Metropolis-Hastings (RWMH) or a related refinement.

7

Joint likelihood

• But recall that we also have the joint likelihood of θ conditional on data zT and state states xT :

ln p
(
θ, xT |zT

)︸ ︷︷ ︸
log-posterior

= ln p
(
θ, xT

)︸ ︷︷ ︸
log-prior

+ ln p
(
zT |xT , θ

)︸ ︷︷ ︸
log-likelihood

+C

= ln p (θ) + ln p
(
xT |θ

)
+

T∑
t=1

ln p
(
zt |x t , θ

)
+ C

= ln p (θ) +
T∑
t=1

ln p (zt |xt , θ) +
T∑
t=1

ln p (xt |xt−1, θ) + ln p (x0|θ) + C

= ln p (θ) +
T∑
t=1

ln p
(
zt |ϵt , x0, θ

)
+

T∑
t=1

ln p (ϵt |θ) + ln p (x0|θ) + C

• Unfeasible to use RWMH to draw from this joint likelihood.

8

Our approach

• Standard approach scales poorly:

• Exact filters applicable only to a limited model class.

• Approximate filters are costly and prone to failure.

• RWMH exhibits dimension-dependent time to draw “effective” samples.

• In this paper:

• Replace RWMH with HMC: more efficient and reliable sampling.

• Draw from joint likelihood, allowed by HMC, bypassing filtering.

• A filter-free, universal way to estimate non-linear, non-Gaussian models.

9

Random Walk Metropolis-Hastings

• θi+1 ∼ N (θi ,M).

• Accept with probability

min
(
1, p(θi+1|yT)

p(θi |yT)

)
.

10

Hamiltonian Monte Carlo

• qi+1 ∼ N (0,M).

• Set q(0) = qi+1 and θ(0) = θi .

• θi+1|qi+1 through τ = 0, ..., L:

• q(τ + ϵ/2) =

q(τ) + ϵ
2
∇θ log p(θ(τ)|yT).

• θ(τ + ϵ) = θ(τ) + ϵM−1q(τ + ϵ/2).

• q(τ + ϵ) =

q(τ+ϵ/2)+ ϵ
2
∇θ log p(θ(τ+ϵ)|yT).

• Accept with probability:

min
(
1,

exp(log p(θi+1|yT)− 1
2 q

T
i+1M

−1qi+1)

exp(log p(θi |yT)− 1
2 q

T
i M−1qi)

)
.

11

High-dimensional geometry

• Expectation values are given by accumulating the integrand over a volume.

• In regular models, posterior density decays exponentially with distance from mode: there is not much

volume at the mode!

• Simple example: think about tossing a coin 1000 times, with p(H) = 0.500000001.

1. {H,H, ...,H} is the most likely event.

2. And yet, most events will have around 500 heads!

• In high D, volumes concentrates in thin shell O(
√
D) away from mode: typical set (this a

manifestation of concentration of measure).

• Without preferred direction, RWMH must take small steps to stay on the typical set.

• HMC can use gradients to stay on the typical set and explore posterior better.

• So, everything is about getting derivatives right!
12

0

5

10

15

20

25

1 2 4 8 16 32 64 128 256 512
Number of parameters

E
uc

lid
ea

n
di

st
an

ce
 fr

om
 0

13

Differentiable programming

• Differentiable programming is one of the top research areas in computer science right now.

• This is the programming approach used by ChatGPT.

• Idea: write code that can be easily differentiated. How?

• Think about any program as a compositional function that maps inputs to outputs by composing

functions along directed acyclical graph (DAG).

• Derivative computed by accumulating derivatives of node functions along a DAG using AD.

14

15

Automatic differentiation and the cheap gradient principle

• We apply AD within and between blocks by relying on a large library of primitives.

• By grouping terms, we can reduce cost exponentially relative to naive symbolic derivatives.

• Order of accumulation in chain rule affect performance:

• Forward topological mode: accumulate from inputs to outputs.

• Reverse topological mode: pass along sensitivities (“adjoints”) from outputs to inputs.

• Cheap gradient principle: Reverse mode computes gradients in O(1) time:

• Upshot: gradients same order of cost as function evaluation.

• Gradient-based algorithms (e.g., HMC) as cheap per iterate as 0th order (e.g., RWMH).

16

How to differentiate a program block?

• One could directly unroll a block: differentiate through the steps. In practice impossible for DSGE

models. Why?

• Think about the QZ algorithm complex-valued, eigenvalue sort only almost surely pointwise

differentiable.

• Sorry, Stan fans. Though, see Farkas and Tatar (2020).

• Instead, we register custom adjoint rules for DSGE models to bypass AD system for efficient

derivative program.

• Improvement with respect to existing methods, such as Iskrev (2010).

17

Three software components

• Companion library: DifferentiableStateSpaceModels.jl provides differentiable rational

expectations solver implementations at first and second order with custom adjoint rules.

• Methods for difference equations added to DifferenceEquations.jl: Conditional and

unconditional sequence and likelihood evaluation for simulations and IRFs.

• Likelihoods handled within Turing.jl probabilistic programming library.

18

Three models

• Real business cycle model at first (linearization) and second order (with simulated data).

• The real small open economy model of Schmitt-Grohé and Uribe (2003) (with simulated data).

• The mid-size New Keynesian model of Fernández-Villaverde and Guerrón-Quintana (2021) (with real

data).

• Examples use NUTS (Hoffman and Gelman, 2014) No U-Turn Sampler: Variant of HMC with

adaptively-chosen integration length.

19

NUTS

20

Table 1: RWMH with Marginal Likelihood, RBC Model, First-order

Parameters Pseudotrue Post. Mean Post. Std. ESS R-hat ESS% ESS/second Time

α 0.3 0.2996 0.0078 821.2 1.0009 0.8295 2.6029 315

βdraw 0.2 0.204 0.0529 418.99 1.0009 0.4232 1.328 315

ρ 0.9 0.8981 0.0074 6188.4 1.0 6.2509 19.615 315

Table 2: NUTS with Marginal Likelihood, RBC Model, First-order

Parameters Pseudotrue Post. Mean Post. Std. ESS R-hat ESS% ESS/second Time

α 0.3 0.2994 0.0076 3214.6 1.0007 49.456 10.152 317

βdraw 0.2 0.2003 0.0512 3282.7 1.0002 50.503 10.367 317

ρ 0.9 0.8985 0.0073 3638.4 1.0 55.976 11.491 317

Table 3: NUTS with Joint Likelihood, RBC Model, First-order

Parameters Pseudotrue Post. Mean Post. Std. ESS R-hat ESS% ESS/second Time

α 0.3 0.2982 0.0071 41.168 1.0191 1.0292 0.0501 822

βdraw 0.2 0.1932 0.0504 84.815 1.0048 2.1204 0.1032 822

ρ 0.9 0.8982 0.0075 248.1 1.0064 6.2024 0.3019 822

21

Figure 1: NUTS with Marginal Likelihood, RBC Model, First-order 22

Figure 2: NUTS with Joint Likelihood, RBC Model, First-order 23

Table 4: RWMH with Marginal Likelihood on Particle Filter, RBC Model, Second-order

Parameters Pseudotrue Post. Mean Post. Std. ESS R-hat ESS% ESS/second Time

α 0.3 0.3057 0.0074 43.986 1.0287 0.4887 0.0034 13127

βdraw 0.2 0.2248 0.0447 33.342 1.0434 0.3705 0.0025 13127

ρ 0.9 0.9023 0.0064 414.87 1.0068 4.6097 0.0316 13127

Table 5: NUTS with Joint Likelihood, RBC Model, Second-order

Parameters Pseudotrue Post. Mean Post. Std. ESS R-hat ESS% ESS/second Time

α 0.3 0.3053 0.0077 89.406 1.0131 2.2351 0.0355 2519

βdraw 0.2 0.2243 0.046 115.37 1.009 2.8842 0.0458 2519

ρ 0.9 0.9021 0.0047 481.7 1.0046 12.042 0.1912 2519

24

25

Figure 3: NUTS with Joint Likelihood, RBC Model, Second-order 26

(a) First-order RBC (b) Second-order RBC

Figure 4: Inferred TFP Shocks of RBC Model

27

Table 6: Frequentist Statistics – Second-order Joint

Parameters Mean Bias MSE Cov. Prob. 80% Cov. Prob. 90%

T = 50 α −0.001 7.14× 10−5 96% 98%

βdraw 0.0313 0.0027 94% 98%

ρ −0.009 0.0004 74% 84%

T = 100 α 0.0010 4.46× 10−5 94% 96%

βdraw 0.0181 0.0017 94% 100%

ρ −0.002 8.69× 10−5 72% 90%

T = 200 α 0.0013 3.36× 10−5 88% 98%

βdraw 0.0086 0.0017 84% 92%

ρ −0.001 2.03× 10−5 88% 94%

28

NUTS, Joint Likelihood, Second-order

RWMH, Marginal Likelihood, Second-order

α βdraw ρ

Figure 5: Robustness Comparison on Second-order RBC: Trace Plot
29

Figure 6: First Order RWMH+Kalman vs. HMC+Kalman vs. HMC+Joint 30

Figure 7: Second Order RWMH+Particle vs. HMC+Joint 31

Table 7: Estimation, FVGQ model

Parameters Mean Std. ESS R-hat

Kalman Joint

1st

Joint

2nd

Kalman Joint

1st

Joint

2nd

Kalman Joint

1st

Joint

2nd

Kalman Joint

1st

Joint

2nd

βdraw 0.2107 0.2091 0.2034 0.0778 0.0795 0.0777 364.18 356.43 781.69 1.0030 1.0024 1.0037

h 0.7534 0.7372 0.7538 0.1137 0.1188 0.1148 189.01 181.83 502.38 1.0035 1.0144 1.0004

κ 4.2667 4.1932 4.1359 1.3054 1.2162 1.2679 499.63 468.10 1475.4 1.0091 1.0006 1.0002

χ 0.4893 0.5086 0.5060 0.1501 0.1517 0.1450 218.89 250.94 1199.4 1.0316 1.0002 1.0000

γR 0.4636 0.4806 0.4650 0.0745 0.0791 0.0780 262.76 308.30 796.87 1.0004 0.9999 1.0010

γΠ 1.9077 1.9004 1.8969 0.0761 0.0824 0.0849 315.30 293.19 1797.0 1.0014 1.0022 1.0019

100
(
Π̄ − 1

)
0.8991 0.8867 0.8961 0.0826 0.0842 0.0800 351.67 225.21 923.10 1.0014 1.0083 1.0003

ρd 0.5781 0.5894 0.5924 0.2064 0.2081 0.2098 178.16 133.55 431.25 1.0037 1.0008 0.9999

ρφ 0.9619 0.9574 0.9569 0.0235 0.0309 0.0310 250.04 63.954 278.07 1.0000 1.0002 1.0050

ρg 0.7921 0.7767 0.7910 0.1570 0.1618 0.1586 128.31 137.32 530.22 1.0025 1.0110 1.0001

ḡ 0.3656 0.3708 0.3712 0.0543 0.0564 0.0574 316.70 177.06 828.77 1.0003 1.0230 1.0009

σA 0.0073 0.0075 0.0075 0.0012 0.0013 0.0013 279.13 229.15 1093.1 0.9999 1.0003 1.0014

σd 0.0269 0.0285 0.0296 0.0126 0.0150 0.0171 223.30 181.06 413.28 1.0049 1.0100 1.0000

σϕ 0.0146 0.0142 0.0140 0.0024 0.0022 0.0023 290.50 206.74 677.21 1.0008 0.9999 1.0009

σµ 0.0072 0.0072 0.0073 0.0012 0.0011 0.0012 270.72 318.07 816.76 1.0005 1.0067 1.0008

σm 0.0078 0.0075 0.0077 0.0015 0.0014 0.0015 214.51 312.64 776.08 1.0073 1.0001 1.0006

σg 0.0095 0.0093 0.0095 0.0020 0.0021 0.0020 172.03 106.32 503.85 1.0038 1.0136 1.0002

Λµ 0.0037 0.0038 0.0038 0.0009 0.0010 0.0009 238.88 280.80 916.97 1.0035 1.0010 1.0002

ΛA 0.0015 0.0015 0.0015 0.0005 0.0005 0.0005 313.22 268.18 1344.7 1.0146 1.0032 0.9999

32

Conclusion

• Differentiable state space models enable easy and scalable nonlinear: DSGE inference by HMC.

• Many more applications are possible:

• VI, SVGD, SGMCMC, parallel tempering, HMC within SMC.

• Projection, higher order perturbation, differentiable filtering.

• Neural networks, optimizers.

• Porting into FPGAs (Field Programmable Gate Arrays): Fernández-Villaverde et al. (2022).

33

	anm2:
	2.1:
	2.0:
	anm1:
	1.1:
	1.0:
	anm0:
	0.1:
	0.0:

